
Neuromata

Contents

1 Computational power of neural networks . 1
2 Automata and regular languages . 1
3 Simulation of finite automata by the neural networks . 2
3.1 The construction of neural networks . 2
4 Neuromata - the acceptors of languages . 3

1 Computational power of neural networks

Even if neural networks are computational models motivated by ideas about brain functioning, their
computational power and efficiency is studied in the framework of computer science. It means to compare
the computational power of neural networks to the traditional models of computation, such as finite
automata and Turing machines. In this chapter the neural networks will work as neural acceptors
of languages (over binary alphabet). There are known two types of input protocol. By finite neural
networks, it is only one neuron as an input neuron for an input word (the input neuron reads sequentially
bits of the input word). For this type of the input protocol there are considered discrete or analog model
of network. In the second type of protocol, an sequence of neural networks exists, for each length of the
input there is exactly one neural network with the competent number of neurons. In both cases, the
state of output neuron specifies if the input word belongs to the language or not. We consider first type
of input protocol and show some theoretical results from this point of view.

2 Automata and regular languages

We recall some basic notion from the automata theory and the language theory on the base Hopcroft
[?]. An alphabet is a finite set of symbols. A string over alphabet Σ is a finite-length sequence of symbol
from Σ. The length of a string s, denoted |s|, is the total number of symbols in s. The empty string,
denoted by ε, is the string with no symbols. If s and t are strings, then the concatenation of s and t is
the string st.

Definition 1: A language over an alphabet Σ is a set of strings over Σ. Let L1 and L2 be two languages.
The language L1.L2, called the concatenation of L1 and L2, is {st|s ∈ L1, t ∈ L2}. Let L be the
language. Then define L0 = {ε} and Ln = L.Ln−1 for n ≥ 1. The iteration of L, denoted L?, is the
language L? =

⋃∞
n=0 L

n. Similarly the positive iteration L+ =
⋃∞
n−1 L

n. �

Definition 2: The (deterministic) finite automaton is a 5-tuple A = (Q,Σ, δ, q0, F) where Q 6= ∅ is a finite
set of automaton states, Σ is an input alphabet (in our case Σ = {0, 1}, δ : Q× Σ→ Q is the transition
function, q0 ∈ Q is the initial state of the automaton, and F ⊆ Q is a set of accepting states.

The generalized transition function δ∗ : Q×Σ∗ → Q of the automaton is defined in the following way:

1. δ∗(q, ε) = q for q ∈ Q,

2. δ∗(q, wa) = δ(δ∗(q, w), a) for q ∈ Q,w ∈ Σ∗, a ∈ Σ. �

It was shown by Alon that every m-state deterministic finite automaton can be realized as discrete
neural net with O(m

3
4) neurons and that at least Ω((m logm)

1
3) neurons are necessary for such construc-

tion. This upper and lower bound was improved by showing that O(m
1
2) neurons suffice and the most of

the finite automata require Ω(m
1
2) neurons when the values of weights in the network are polynomial in

the network size.

1

Definition 3: The set RE of regular expressions over an alphabet Σ = {0, 1} is defined as the minimal
language over an alphabet {0, 1, ∅, ε,+, ., ?, (,)} satisfying the following conditions:

1. ∅, ε, 0, 1 ∈ RE

2. if α, β ∈ RE then (α+ β), (α.β), α? ∈ RE .

The setRL = {[α]|α ∈ RE} is the set of regular languages [α] which are denoted by regular expressions
α as follows:

1. [∅] = ∅, [ε] = {ε}, [0] = {0}, [1] = {1},

2. if α, β ∈ RE then [α+ β] = [α] ∪ [β], [α.β] = [α].[β], [α?] = [α]?.

The regular expression α+ corresponding to [α]+ is define by following expression, [α?] = [ε + α+].
�

We remember known the result from Hopcroft and Ullman [?]: A language L is regular iff it is
recognised by some finite automaton A.

3 Simulation of finite automata by the neural networks

We introduce the construction with 2m+ 1 neurons as has been investigated by Alon and all. [1]. This
construction is very simple and shows the very used method for next construction of neural networks.

3.1 The construction of neural networks

Let A is the finite automaton. We describe an architecture and weight values of the constructed neural
network.

• Architecture
Each state of A will be represented by two neurons. The state q ∈ Q is represented by the neurons
(q, 0) and (q, 1) and we built the neural network in such way that at time t neuron (q, i) fires if and
only if the original automaton A at time t is in state q and receives input i. The construction is
illustrated in Example 1. In addition to the input neuron and the 2m neurons obtained as above
there is a 2m+ 1-th neuron called the output neuron.

• Weight values
For any two states qj and qk, w(qj ,i),(qk,0) = w(qj ,i),(qk,1) ∈ {0, 1}, and this equals 1 if and only if
in the original finite state machine state qj with input i leads to the next state qk. For inputs,
w0,(q,0) = −1 and w0,(q,1) = +1 for all q. For outputs, w(q,i),2m+1 = τ(q, i) (τ is output function).
All weights not yet mentioned are equal to zero. The thresholds are defined by c(q,1) = 2, c(q,0) = 1
and c(2m+1) = 1. It is clear that if at step t = 0 exactly one of the neurons (q, i), q ∈ Q, i = 0, 1,
fires then at any step t ≥ 1 exactly one of those neurons fires and the dynamics is exactly the same
as that for the finite automaton. �

Example 1.
Let A1 = (Q,Σ, δ, q0, F) is the finite automaton to recognize the language which contains all words

and only the words with the even number of zeros and the even number of ones. The automaton is in
Figure 1. The automaton has four states: q1, q2, q3, q4. The initial state is q1.

We describe the using of the states:
The automaton is situated in state

−q1 – iff the current input word has the even number of 0 and the even number of 1,

−q2 – iff the current input word has the even number of 0 and the odd number of 1,

−q3 – iff the current input word has the odd number of 0 and the even number of 1,

−q4 – iff the current input word has the odd number of 0 and the odd number of 1.

n

n
n n�
��

��* HHH
HHj

���
���

���
HH

HHY

HHHHj
��

����q1

q2

q4

q3

6

H
HH

HHY
�
��
�*

1

1 0

0

1

1

0

0

Fig. 1: The finite automaton for language of all words with the even number of 0 and the even number
of 1.

The transition function is defined

δ(q1, 0) = q3, δ(q2, 0) = q4, δ(q3, 0) = q1, δ(q4, 0) = q2, (1)

δ(q1, 1) = q2, δ(q2, 1) = q1, δ(q3, 1) = q4, δ(q4, 1) = q3, (2)

The neural network to the automaton A is in Figure 2.

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��

��
��

?

A
A �

�7
S
So

�

���
J
JJ]

�

A
AAK @

@ �
��

J
J]

�� JĴ���
???? ????

�� SSw��/
q1, 0 q1, 1 q2, 0 q2, 1 q3, 0 q3, 1 q4, 0 q4, 1

- �

�
��

?

��=^ B
B�

�/
A
AU

? input

1 1
1 1

1 1
1 1 1 1

1-11-11-11-1

1 2 1 2 1 2 1 2

aa

Fig. 2: The neural network to the finite automaton in the example.

The construction shows that each language recognized by the finite automaton (a regular language)
can be recognised by the neural network and the number of the neural network is depending on the
number of the automaton state. The opposite question we try to answer in the next section.

4 Neuromata - the acceptors of languages

There are known the following three results [8]:

1. Any language L = L(N) recognized by a neural network (an acceptor) N is regular.

2. For every regular language L denoted by a regular expression L[α] there exists a neural acceptor
N of the size O(|α|) such that L is recognized by N .

3. There exists regular languages Ln = [αn], n ≥ 1 such that any neural acceptor N that recognizes
the language Ln = L(N) requires at least Ω(|αn|) neurons.

We will try to explain the above described results. For the first type of input protocol we define the
finite discrete neural acceptor. It is very closed to the finite automaton and it will be called neuromaton.

Definition 4: A neural acceptor (shortly, a neuromaton) is a 7-tuple N = (V, inp, out,
E,w, h, sinit), where V is the set of n neurons including the input neuron inp ∈ V , and the output neuron

out ∈ V , E ⊆ V × (V − inp) is the set of edges, w : E −→ Z (Z is the set of integers) is the weight
function (we use the abbreviation w(< i, j >) = wij), h : V − {inp} −→ {0, 1} is the threshold function
(the abbreviation h(i) = hi is used), and sinit : V − {inp} −→ {0, 1} is the initial state of the network.
The graph (V,E) is called the architecture of the neural network N and n =| V | is the size of the
neuromaton. The number of bits that are needed for the whole neuromaton representation (especially
for the weight and threshold functions) is called the descriptional complexity of neuromaton. �

For every regular language L ∈ RL denoted by regular expression L = [α] there exists a neuromaton
N of the size O(|α|) such that L = L(N) is recognized by N . For language L = [α], we construct a
neuromaton Nα = (V, inp, out, E,w, h, sinit of size O(|α| so that L = Lα.

The construction of a neuromaton
The construction is described in Š́ıma [8]. We first build an architecture (V,E) of the neural network

Nα recursively with respect to the structure of the regular expression α. For that purpose we define
the sequence of graphs Vk, E, k, k = 0, . . . , p where (V0, E0) has one vertex corresponding to the whole
expression α which is recursively partitioned into shorter regular subexpressions, so that (Vp, Ep) have
vertices of the type 0 or 1 according to the expression α.

1. V0 = {s, α, o}, E0 = {[s, α], [α, o]}

2. Assume that Vk, Ek, 0 ≤ k < p have already been constructed and β ∈ Vk is a subexpression
of α different from 0 or 1. Hence, besides the empty language and the empty string, the regular
expression β can denote union, concatenation, or iteration of subexpressions in β. We will construct
a new graph (Vk+1, Ek+1). We remove the vertex β and add new vertices and we get the new graph.
One of the new vertex we can identify as β. The substitutions:

• β is ∅: Vk+1 = Vk − {β}, Ek+1 = Ek − {[x, β], [β, y] ∈ Ek}.
• β is ε: Vk+1 = Vk−{β}, Ek+1 = (Ek−{[x, β], [β, y] ∈ Ek})∪{[x, y]|[x, β], [β, y] ∈ Ek−{[β, β]}}.
• β has the form β + γ: Vk+1 = Vk ∪ {γ}, Ek+1 = Ek ∪ {[x, γ], [γ, y]|[x, β], [β, y] ∈ Ek} ∪
{[γ, γ]|[β, β] ∈ Ek}.

• β has the form β.γ: Vk+1 = Vk∪{γ}, Ek+1 = (Ek−{[β, y] ∈ Ek})∪{[β, γ]} ∪{[γ, y]|[β, y] ∈ Ek}.
• β has the form β+: Vk+1 = Vk, Ek+1 = Ek ∪ {[β, β]}.

This construction is finished after p = O(|α|) steps when Vp containes only subexpressions 0 or 1.
Then we define the network architecture in the following way:

V = Vp ∪ {inp}, E = Ep ∪ {[inp, β]|β ∈ Vp − {s, o}}. (3)

For i ∈ V denote by d(i) = |{j ∈ Vp|[j, i] ∈ E}|. Now we can define the weight function w and the
threshold function h:

• i ∈ V is the neuron of the type 1: wij = 1 for [j, i] ∈ Ep and wi,inp = d(i), hi = d(i) + 1.

• i ∈ V is the neuron of the type 0: wij = 1 for [j, i] ∈ Ep and wi,inp = −d(i), hi = 1.

• s ∈ V : hs = 1.

• o ∈ V : wo,j = 1 for [j, o] ∈ Ep, ho = 1.

The initial state is defined as s0(i) = 0 for i ∈ Vp − {s} and s0(s) = 1. The set V contains three special
neurons inp, s, o as well as, others neurons of the type 1 or 0 — one for each subexpression 1 or 0 i α;
hence |V | = O(|α|). �

An example of the neuromaton to the language [(1(0 + 0(1 + 0)))?] is in Figure 3.

The third result shows the lower bounds for the number of neurons that, in worst case, are necessary
for the recognition of regular languages which are described by regular expressions of the length n. As a
consequence, it follows that the above construction of the neuromaton is size-optimal. The lower bounds
should be proved for the set of languages:

���� ����
����

����

����
����

���� {

s

input

1

1

o

1

0

0

?

6

- - -
?

�
�
�
���

�
�
�
�
��

�
�
�
�
�
�
�
�
�
���

6

?
-

H
HH

HY
J
J
J
J
JJ]

��
���:

6

�

�
�
���

��3

-

J
J
J
JĴH

HH
H

HH
H

HHY

1

1

Fig. 3: Neuromaton for regular language [(1(0 + 0(1 + 0)))?].

Ln = [(10 + 1(ε+ 0)10 + (1(ε+ 0))210 + . . .+ (a(ε+ 0))n−310 + (1(ε+ 0))n−1(1 + 0))?] (4)

Πk =
[
(1(ε+ 0))k

]
, Pn = ∪n−1k=0 . (5)

It is clear that Pn, n ≥ 1 is the set of prefixes for the language Ln. The regular expression which
defines the language Ln is in fact of O(n2) length. It is possible to construct a regular language αn of
linear length denoting the same language Ln. The languges Πn and Pn are used by the construction. And
as the result of our consideration and computations can be proved that every neuromaton N recognizing
the language Ln requires at least Ω(n) neurons.

Discussion. Siegelmann and Sontag [7] proved that one may simulate all Turing machines by re-
current neural first-order networks, it means the finite size networks which consist of interconnections of
synchronously evolving neurons. Each neuron updates its state by applying a ”sigmoidal” function to
the linear combinations of the previous states of all neurons. In particular, one can simulate any multi-
stack Turing machine in real time and there is the net with 886 neurons which computes a universal
partial-recursive functions.

References

[1] Alon, N., Dewdney, A. K., Teunis, J. O.: Efficient Simulation of Finite Automata by Neural Nets,
Journal of ACM, Vol. 38, No. 2, April 1991, pp.495-514.

[2] Hassoun, M. H.: Fundamentals of artificial neural networks. MIT Press, Cambridge, 1995, pp. 511.

[3] Hopfield, J. J.: Neurons with graded response have collective computational properties like those of
two-state neurons. Proceedings of the Nat. Acad. of Sciences, USA, Vol. 81, pp. 3088-3092.

[4] Orponen, P.: Computational complexity of neural networks: A survey, NeuroCOLT Tech. Report
Series, NC-TR-94-010, Royal Holloway University of London, 1994, pp. 20.

[5] Siegelmann, H. T., Sontag, E. D.: Analog computation via neural networks, Theoretical Computer
Science 131, Elsevier, 1994, p. 331-360.

[6] Siegelmann, H. T.: Computation beyond the Turing limit, Science, 1995 , Vol. 268 , p. 545-548.

[7] Siegelmann, H. T., Sontag, E. D.: On the computational power of neural nets, Journal of computer
and system sciences, Vol. 50, No. 1, 1995, p. 132-150.

[8] Š́ıma, J., Neruda, R.: Theoretical Questions on Neural networks, MatfyzPress, Prague, 1996.

